bat365在线平台官网

博士生导师

个人信息
  • 姓名:黄晴
  • 部门:应用数学系
  • 职称:教授
  • 荣誉:博士生导师、学术学位硕士生导师
  • 电子邮件:hqing@nwu.edu.cn
  • 研究方向:可积系统、数学物理


个人简介



  教育背景:

      2005.9-2008.6, bat365中文官网入口, 理论物理, 博士

      2001.9-2004.6, bat365中文官网入口, 计算数学, 硕士

      1997.9-2001.6, bat365中文官网入口, 计算数学, 学士

  工作经历:

      2016.5至今, bat365中文官网入口, bat365在线平台官网, 教授, 博士生导师

      2016.2-2017.2, 英国利兹大学, bat365在线平台官网, 访问学者

      2015.4-2015.4香港城市大学,数学系,访问学者

      2015.2-2015.3香港中文大学,数学科学研究所,访问学者

      2004.6-2016.4, bat365中文官网入口, bat365在线平台官网, 历任讲师和副教授



项目、成果、论文、奖励


1. 主要科研项目


1. 国家自然科学基金面上项目, 高维空间中可积系统的可积结构和代数性质(12571267)2026.1–2029.12.

2. 陕西省自然科学基础研究计划, 非线性发展方程相关的经典可积系统的研究(2025JC-YBMS-033)2025.1–2026.12.

3. 国家自然科学基金面上项目, 半单Lie代数相关的若干经典和量子可积系统的代数和几何性质(11871396)2019.1–2022.12.

4. 陕西省自然科学基础研究计划, Poisson代数与超可积系统(2018JM1005)2018.1–2019.12.

5. 陕西省自然科学基础研究计划, 非线性偏微分方程的Virasoro对称代数实现和切对称群分类(2015JM1037)2015.1–2016.12.

6. 国家自然科学基金青年项目, 非线性发展方程的切对称和拟局部对称(11101332)2012.1–2014.12.

7. 陕西省自然科学基础研究计划, 线性偏微分方程的李对称和拟局部对称群分类(2009JQ1003)2010.1–2011.12.

8. 国家自然科学基金数学天元青年项目, 非线性偏微分方程的李对称和拟局部对称群分类(10926082)2010.1–2010.12.



2. 主要科研论文


[1] A. P. Fordy and Qing Huang, Stationary coupled KdV hierarchies and related Poisson structures.  J. Geom. Phys., 2024, 197: 105079, 35 pages.

[2] A. P. Fordy and Q. Huang.  Stationary flows revisited. SIGMA Symmetry Integrability Geom. Methods Appl., 2023, 19: 015, 34 pages.

[3] A. P. Fordy and Q. Huang. Integrable and superintegrable extensions of the rational Calogero- Moser model in three dimensions. J. Phys. A: Math. Theor., 2022, 55(2): 225203, 36 pages.

[4] A. P. Fordy and Q. Huang. Adding potentials to superintegrable systems with symmetry. Proc. R. Soc. A, 2021, 477(2248): 20200800, 21 pages.

[5] A. P. Fordy and Q. Huang. Superintegrable systems on 3 dimensional conformally flat spaces. J. Geom. Phys., 2020, 153: 103687, 27 pages.

[6] Q. Huang and R. Zhdanov. Realizations of the Witt and Virasoro algebras and integrable equations. J. Nonlinear Math. Phys., 2020, 27(1): 36–56.

[7] A. P. Fordy and Q. Huang. Generalised Darboux-Koenigs metrics and 3-dimensional superintegrable systems. SIGMA Symmetry Integrability Geom. Methods Appl., 2019, 15: 37, 30 pages.

[8] L. Shang and Q. Huang. On superintegrable systems with a cubic integral of motion. Commun. Theor. Phys., 2018, 69(1): 9–13.

[9] A. P. Fordy and Q. Huang. Poisson algebras and 3D superintegrable Hamiltonian systems. SIGMA Symmetry Integrability Geom. Methods Appl., 2018, 14: 022, 37 pages.

[10] C. E. Ye, Q. Huang, S.F. Shen and Y.Y. Jin. A symmetry classification algorithm of the generalized differential-difference equations. Appl. Math. Lett., 2017, 74: 27–32.

[11] Q. Huang, L. Z. Wang and S. L. Zuo. Consistent Riccati expansion method and its applications to nonlinear fractional partial differential equations. Commun. Theor. Phys., 2014, 65(2): 177–184.

[12] Q. Huang and S. F. Shen. Lie symmetries and group classification of a class of time fractional evolution systems. J. Math. Phys., 2015, 56 (12): 123504, 11 pages.

[13] Q. Huang and R. Zhdanov. Group classification of nonlinear evolution equations: semi- simple groups of contact transformations. Commun. Nonlinear Sci. Numer. Simul., 2015, 26: 184–194.

[14] Q. Huang and R. Zhdanov. Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative. Phys. A, 2014, 409: 110–118.

[15] Q. Huang, L. Z. Wang, S. F. Shen and S. L. Zuo. Galilei symmetries of KdV-type nonlinear evolution equations. Phys. A, 2014, 398: 25–34.

[16] Q. Huang, C. Z. Qu and R. Zhdanov. Group classification of linear fourth-order evolution equations. Rep. Math. Phys., 2012, 70 (3): 331–343.

[17] S.F. Shen, C. Z. Qu, Q. Huang and Y. Y. Jin. Lie group classification of the Nth-order nonlinear evolution equations. Sci. China Math., 2011, 54 (12): 2553–2572.

[18] Q. Huang, C. Z. Qu and R. Zhdanov. Group-theoretical framework for potential symmetries of evolution equations. J. Math. Phys., 2011, 52 (2): 023514, 11 pages.

[19] Q. Huang, C. Z. Qu and R. Zhdanov. Classification of local and nonlocal symmetries of fourth-order nonlinear evolution equations. Rep. Math. Phys., 2010, 65 (3): 337–366.

[20] Q. Huang, V. Lahno, C. Z. Qu and R. Zhdanov. Preliminary group classification of a class of fourth-order evolution equations. J. Math. Phys., 2009, 50 (2): 023503, 23 pages.

[21] C. Z. Qu and Q. Huang. Symmetry reductions and exact solutions of the affine heat equation. J. Math. Anal. Appl., 2008, 346 (2): 521–530.

[22] Q. Huang and C. Z. Qu. Symmetries and invariant solutions for the geometric heat flows. J. Phys. A, 2007, 40 (31): 9343–9360.


  • 3.获奖情况    


1. 非线性偏微分方程的对称、不变量和几何可积性”, 陕西省科学技术奖一等奖, 2010, 第三完成人

2. 非线性偏微分方程的对称、不变量和几何可积性”, 陕西省高等学校科学技术奖一等奖, 2008, 第四完成人